Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation.
نویسندگان
چکیده
Mammalian lefty and zebrafish antivin form a subgroup of the TGF beta superfamily. We report that mouse mutants for lefty2 have an expanded primitive streak and form excess mesoderm, a phenotype opposite to that of mutants for the TGF beta gene nodal. Analogously, overexpression of Antivin or Lefty2 in zebrafish embryos blocks head and trunk mesoderm formation, a phenotype identical to that of mutants caused by loss of Nodal signaling. The lefty2 mutant phenotype is partially suppressed by heterozygosity for nodal. Similarly, the effects of Antivin and Lefty2 can be suppressed by overexpression of the nodal-related genes cyclops and squint or the extracellular domain of ActRIIB. Expression of antivin is dependent on Nodal signaling, revealing a feedback loop wherein Nodal signals induce their antagonists Lefty2 and Antivin to restrict Nodal signaling during gastrulation.
منابع مشابه
Lefty Antagonism of Squint Is Essential for Normal Gastrulation
Activities of a variety of signaling proteins that regulate embryogenesis are limited by endogenous antagonists. The zebrafish Nodal-related ligands, Squint and Cyclops, and their antagonists, Lefty1 and Lefty2, belong to the TGFbeta-related protein superfamily, whose members have widespread biological activities. Among other activities, Nodals direct the formation of most mesendoderm. By induc...
متن کاملAsymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ.
The vertebrate brain develops from a bilaterally symmetric neural tube but later displays profound anatomical and functional asymmetries. Despite considerable progress in deciphering mechanisms of visceral organ laterality, the genetic pathways regulating brain asymmetries are unknown. In zebrafish, genes implicated in laterality of the viscera (cyclops/nodal, antivin/lefty and pitx2) are coexp...
متن کاملTGF-β signals from the endoderm induce overlying marginal cells to adopt mesodermal fates while wnt pathway signaling promotes organizer formation. Mesoderm is then patterned along the dorsal-ventral axis in response to a gradient of BMP
The vertebrate midline is essential for generating dorsoventral and anteroposterior pattern, and regulating left-right asymmetry. Initial embryonic patterning is established by localized maternal signals and inductive cell interactions. These signals establish organizing centers that coordinate the body plan. Spemann and Mangold (1924) identified a population of cells from the dorsal margin of ...
متن کاملConserved requirement for EGF-CFC genes in vertebrate left-right axis formation.
Specification of the left-right (L-R) axis in the vertebrate embryo requires transfer of positional information from the node to the periphery, resulting in asymmetric gene expression in the lateral plate mesoderm. We show that this activation of L-R lateral asymmetry requires the evolutionarily conserved activity of members of the EGF-CFC family of extracellular factors. Targeted disruption of...
متن کاملNodal signaling patterns the organizer.
Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechorda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 4 3 شماره
صفحات -
تاریخ انتشار 1999